A Poisson bracket on multisymplectic phase space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Poisson Bracket on Multisymplectic Phase Space ∗

A new Poisson bracket for Hamiltonian forms on the full multisymplectic phase space is defined. At least for forms of degree n − 1, where n is the dimension of space-time, Jacobi's identity is fulfilled.

متن کامل

Vol. Xx (xxxx) a Poisson Bracket on Multisymplectic Phase Space *

A new Poisson bracket for Hamiltonian forms on the full multisymplectic phase space is defined. At least for forms of degree n − 1, where n is the dimension of space-time, Jacobi's identity is fulfilled.

متن کامل

A General Construction of Poisson Brackets on Exact Multisymplectic Manifolds

Multisymplectic geometry provides a mathematical framework to describe classical field theory geometrically. Within this formulation it is not necessary to break manifest Lorentz covariance nor is there a need to use concepts from infinite dimensional geometry. The formalism dates back to the early work by De Donder, Dedecker, and Weyl. By now the exploration of its geometrical aspects has reac...

متن کامل

Poisson bracket for the Vlasov equation on a symplectic leaf

It is by now well known that many nondissipative continuous systems possess a Hamiltonian structure, which when viewed in terms of Eulerian variables has a noncanonical form. Examples from plasma physics include ideal magnetohydrodynamics (MHD) [1], theVlasovequation [2], the two-fluid equations [3], and the BBGKY hierarchy [4]. A common feature of all these systems is that they possess Casimir...

متن کامل

The chiral WZNW phase space as a quasi-Poisson space

It is explained that the chiral WZNW phase space is a quasi-Poisson space with respect to the ‘canonical’ Lie quasi-bialgebra which is the classical limit of Drinfeld’s quasi-Hopf deformation of the universal enveloping algebra. This exemplifies the notion of quasi-Poisson-Lie symmetry introduced recently by Alekseev and Kosmann-Schwarzbach. PACS codes: 11.25.Hf, 11.10.Kk, 11.30.Na keywords: WZ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Reports on Mathematical Physics

سال: 2001

ISSN: 0034-4877

DOI: 10.1016/s0034-4877(01)80081-1